Active-site protein dynamics and solvent accessibility in native Achromobacter cycloclastes copper nitrite reductase

نویسندگان

  • Kakali Sen
  • Sam Horrell
  • Demet Kekilli
  • Chin W Yong
  • Thomas W Keal
  • Hakan Atakisi
  • David W Moreau
  • Robert E Thorne
  • Michael A Hough
  • Richard W Strange
چکیده

Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (AspCAT and HisCAT) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the AspCAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (IleCAT), a determinant of ligand binding, are influenced both by temperature and by the protonation state of AspCAT. A previously unobserved conformation of IleCAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue...

متن کامل

Crystal structure of a NO-forming nitrite reductase mutant: an analog of a transition state in enzymatic reaction.

I257E was obtained by site directed mutagenesis of nitrite reductase from Achromobacter cycloclastes. The mutant has no enzyme activity. Its crystal structure determined at 1.65A resolution shows that the side-chain carboxyl group of the mutated residue, Glu257, coordinates with the type 2 copper in the mutant and blocks the contact between the type 2 copper and its solvent channel, indicating ...

متن کامل

Cloning, characterization, and expression of the nitric oxide-generating nitrite reductase and of the blue copper protein genes of Achromobacter cycloclastes.

The nitrite reductase (NIR) and blue copper protein (BCP) genes have been cloned from Achromobacter cycloclastes and characterized. NIR gene encodes a protein of 378 amino acid residues including a putative signal peptide of 37 residues. BCP gene encodes a protein of 148 residues with a 24-residue signal peptide. The DNA-derived amino acid sequence of NIR is in complete agreement with that from...

متن کامل

Preliminary crystallographic studies of two C-terminally truncated copper-containing nitrite reductases from Achromobacter cycloclastes: changed crystallizing behaviors caused by residue deletion.

The C-terminal segment of copper-containing nitrite reductase from Achromobacter cycloclastes (AcNiR) has been found essential for maintaining both the quaternary structure and the enzyme activity of AcNiR. C-terminal despentapeptide AcNiR (NiRc-5) and desundecapeptide AcNiR (NiRc-11) are two important truncated mutants whose activities and stability have been affected by residue deletion. In t...

متن کامل

Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria.

The locations of cytochrome cd1 nitrite reductases in Pseudomonas aeruginosa and Pseudomonas fluorescens and copper nitrite reductases in Achromobacter cycloclastes and Achromobacter xylosoxidans were identified. Immunogold labeling with colloidal-gold probes showed that the nitrite reductases were synthesized exclusively in anaerobically grown (denitrifying) cells. Little immunogold label occu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017